Lessons 1-4 Review Problems

June 21, 2016

- 1. Write inequalities to describe the region consisting of all points on or between spheres of radius r and R centered at the origin, where $r \leq R$. What if the sphere is centered at (1, 0, -5)?
- 2. Find a unit vector in the direction of $\vec{a} = \langle 1, 1, 1 \rangle$.
- 3. (a) If $\vec{a} \cdot \vec{b} = 8$, $|\vec{a}| = 4$ and $|\vec{b}| = 4$, what is the angle in radians between \vec{a} and \vec{b} ?
 - (b) If $\vec{a} \times \vec{b} = \langle 2, 0, 2 \rangle$, $|\vec{a}| = 4$ and $|\vec{b}| = 4$, what is the angle in radians between \vec{a} and \vec{b} ?
- 4. Write a vector equation of the line segment from (1, -5, 0) to (5, 4, -10).
- 5. At what point(s) does the line $\vec{r}(t) = \langle t, 2t, 3t \rangle$ intersect the surface 2x + y z = 10?
- 6. Find the equation of the plane perpendicular to both 3x + y z = 0 and x z = 10 which goes through the point (1, 0, 2).
- 7. (a) Identify and sketch the quadric surface x² + 4y² + 2y z² = 0.
 (b) Identify and sketch the quadric surface x² + 4y² + 2y z² = -1/4.
- 8. Sketch the curve parametrized by $\vec{r}(t) = \langle \frac{t}{\pi}, \sin t, \cos t \rangle$. Indicate the direction of the curve with arrows and label $\vec{r}(0), \vec{r}(\pi)$, and $\vec{r}(-\pi)$.
- 9. If $\vec{r}(t) = \langle 2te^{3t}, 0, t^2 \rangle$, find $\vec{r}'(t)$ and $\int_0^1 \vec{r}(t) dt$.
- 10. Find the arc length function, s(t), for $\vec{r}(t) = \langle 2t, 2t^2, \frac{8}{3}t^{3/2} \rangle$ for $t \ge 0$.
- 11. Find $\vec{T}(t)$, $\vec{N}(t)$, and the curvature of $\vec{r}(t) = \langle 2t^2, t, 3t \rangle$.

Answers

1.
$$\{(x, y, z) | r^2 \le x^2 + y^2 + z^2 \le R^2\}; \{(x, y, z) | r^2 \le (x - 1)^2 + y^2 + (z + 5)^2 \le R^2\}$$

2. $\frac{1}{\sqrt{3}}\langle 1, 1, 1 \rangle$
3. (a) $\frac{\pi}{3}$
(b) $\frac{\pi}{6}$
4. $\vec{r}(t) = \langle 1 + 4t, -5 + 9t, -10t \rangle, 0 \le t \le 1$ (there are other solutions, too!)
5. (10, 20, 30)

6.
$$(x-1) - 2y + (z-2) = 0$$
 (or $x - 2y + z = 3$)

- 7. (a) hyperboloid of one sheet centered at (0, -1/4, 0) and opening parallel to the z-axis
 - (b) cone centered at (0, -1/4, 0) and opening parallel to the z-axis (both of these graphs look similar to their respective graphs on page 830 in the book)

8.

9.
$$\vec{r}'(t) = \langle 2e^{3t} + 6te^{3t}, 0, 2t \rangle; \int_0^1 \vec{r}(t)dt = \langle \frac{4}{9}e^3 + \frac{2}{9}, 1, 2 \rangle$$

10. $s(t) = 2t^2 + 2t$

$$11. \ \vec{T}(t) = \frac{1}{\sqrt{16t^2 + 10}} \langle 4t, 1, 3 \rangle; \ \vec{N}(t) = \frac{1}{4\sqrt{20(8t^2 + 5)}} \langle 40, -16t, -48t \rangle; \ \kappa = \frac{2\sqrt{10}}{8t^2 + 5}$$